
Remote proc resource manager

overview

Arnaud Pouliquen/Loic Pallardy

2Proposed Terminology
To understand Resource Management mechanism, we need to

be aligned on terminology. Here is a proposal:

• Peripheral resource: A peripheral which can be assigned and

controlled by a core without conflict with other cores:

⇒Peripheral can be isolated for a core (Hw semaphore, isolation, software

resource manager…)

• System resource: central SoC resource required to operate

the remote processor subsystem or a peripheral, shared by all

cores and controlled by the master.
• Resources which are commons : gpios, regulators, clocks, resets…

• Resources which share common registers banks (platform dependent)

3

System resource for coprocessor
management

• Remote proc platform driver is
in charge of the system
resources needed to operate the
remote processor subsystem.

• Clocks

• Power

• Reset

• Memories access

• Rely on Linux frameworks that
manages the system resources
for Linux core. S

y
s
te

m
 r

e
s
o
u
rc

e
s

Interconnect / bus

Remote processor
subsystem

CPU

MPU/MMU

Clock(s)

Reset

Power

Shared
memories

4

System resource for Peripheral
resources

Peripheral

Registers

Interconnect / bus

Clock(s)

Reset

Interrupt line(s)

DMA request

Signal line(s)

Power(s)

IOs

S
y
s
te

m
 r

e
s
o
u
rc

e
s

P
e
ri
p
h
e
ra

l
re

s
o
u
rc

e
s

• System resources also
used to operate peripheral.

⇒ If not configured, peripheral is

not functional.

• Peripheral resource can
be assigned:

• To the master Linux core.

• To the remote core.

Clock(s)

Reset

Power

Shared
memories

Remote processor
subsystem

CPU

MPU/MMU

5

Requirements Sum-up
• A Peripheral resource can be assigned to a master or slave core

on remote processor firmware start.

⇒Static assignment.

• A Peripheral resource can be assigned or reassigned during

remote processor runtime

⇒Dynamic assignment based on RPMsg.

• System resources must be handled by Master core as common for

all cores.

⇒To manage concurrent access and global configuration (for instance clock tree)

• System resources associated to a peripheral can be updated (for

instance clock rate update).

• Power management strategy can be implemented.

6Why static assignment

⇒Solution proposed in current version of RPROC SRM.

• Pro.

• Needed for subsystem without IPC (no shared memory, or remote processor with limited

memory).

• No Latency constraints induced by IPC messaging.

• Remote processor has not to be aware how to configure the system resource (as a Linux

driver).

• Stop, crash and suspend management is simplified.

• Cons.

• No check of the availability.

• No reconfiguration possible during runtime.

⇒TI solution based on RPMsg is complementary and address these

cons points. ST Plan it to implement services on top of rproc_srm.

7ST solution: DT overview

soc {

i2C1: i2c@F0010000 {

compatible = "st,i2c";

clocks = <&rcc_clk I2C1_K>;

pinctrl-0 = <i2c1_pins_a>;

status = “disabled";

}

slave_proc0@30000000 {

compatible = “st, slave_rproc”;

reg = <0x30000000 0x10000>,

resets = <&rcc_rst>;

reset-names = "slave_core0_rst";

clocks = <&rcc_clk RPROC_K>;

clock-names = “slave_core0_clk";

system_resources {

compatible = "rproc-srm-core";

status = “okay";

I2C1: i2c@F0010000 {

compatible = "rproc-srm-dev";

clocks = <&rcc_clk I2C1_K>;

pinctrl-0 = <i2c1_pins_a>;

status = “okay";

};

};

};

};

• One SRM core node similar to a “device
bus” for a remote processor:

• List peripheral resources associated.

• To be extended to add RPMsg channel for

dynamic configuration.

• One or several SRM devices that
represent(s) peripheral resource
assigned to the remote processor.

• Generic platform devices for basic system

resources.

• Specific platform devices for SoC specificities.

• The peripheral is identified by the node name

and/or physical address.

• Core assignment switching can be down
by Bind/unbind (or overlay?).

8

Alternative 1: define all system resources in

remoteproc node

soc {

i2C1: i2c@F0010000 {

compatible = "st, i2c";

clocks = <&rcc_clk I2C1_K>;

pinctrl-0 = <i2c1_pins_a>;

status = “disabled";

}

slave_proc0@30000000 {

compatible = “st, slave_rproc”;

reg = <0x30000000 0x10000>,

resets = <&rcc_rst>;

reset-names = "slave_core0_rst";

clocks = <&rcc_clk I2C1_K>;

pinctrl-0 = <i2c1_pins_a>;

};

};

• Pro

• Simple to implement.

• Cons

• No link between the system resources and

a peripheral to facilitate reconfiguration.

• Peripheral get /release.

• Peripheral suspend/resume.

⇒Remote processor must know the system

resources.

• How to handle specific platform system

resources?

9Alternative 2: phandle to peripheral node

soc {

i2C1: i2c@F0010000 {

compatible = "st,i2c";

clocks = <&rcc_clk I2C1_K>;

pinctrl-0 = <i2c1_pins_a>;

status = “disabled";

}

slave_proc0@30000000 {

compatible = “st, slave_rproc”;

…

system_resources {

compatible = "rproc-srm-core";

res =<&i2C1>

res-name = « i2c1»

};

};

};

• Pro

• Only one node common for both core.

• Reference to Linux core declaration to

check availability for the remote processor.

• Cons

• Design imposes that system resources are

same for both cores to operate the

peripheral.

• Does it make sense to associate a driver to

a device with « disabled » status?

• How to handle specific platform system

resources?

Rproc SRM

Community

3rd Party

Hardware

L
e

g
e

n
d

Peripheral X

remoteproc

rproc_srm_core

rproc_srm_dev

Main processor

Linux

Coprocessor

application

System resource
Y

I/O pins

Clocks

User space

Kernel space

Hardware

Configure systems

resources for the

peripheral X

Periph_X_driver

System resource manager overview:

static configuration only

power

application

Rproc_srm_dev

can be generic or

platform dependent

Peripheral X

remoteproc

rproc_srm_core

rproc_srm_dev

Main processor

Linux

Coprocessor

application

System resource
Y

I/O pins

Clocks

User space

Kernel space

Hardware

Configure systems

resources for the

peripheral X

periph_x_driver

System resource manager overview:

static + dynamic configuration

power

application

OpenAMPrpmsg/virtio

A channel is created to

implement services for

runtime system resource

re-configuration

Rproc SRM

Community

3rd Party

Hardware

L
e

g
e

n
d

