
Linux Remote
&

Decouple RPMsg and Remoteproc

Etsam Anjum
February 9, 2017

Two Topics

• Linux Remote

• Decouple RPMsg from Remoteproc

LINUX REMOTE

Configurations Not Possible Today

Linux
Remoteproc

RPMsg

Master Core

Linux
Remoteproc

RPMsg

Remote Core

BM/RTOS
OpenAMP

Master Core

LCM

RPMsg RPMsg

LCM

Linux
Remoteproc

RPMsg

Remote Core

Had this configuration
working in early
OpenAMP Code

• Rpmsg-Master
• Removed remoteproc
• Custom platform

driver

• Remoteproc-master
• Rpmsg-remote

Assumptions

• Remoteproc + RPMsg

• VirtIO (virtqueue) is a shared memory transport layer

RPMsg

• Only has implementation for Master
– Master Characteristics

• Shared Memory Management
– Creates DMA memory pool for shared memory
– Populates buffers in the virtqueues, for remote Tx virtqueue also

• Protocol
– Triggers startup sequence
– Features acknowledgement & status reporting - using Virtio device status field
– Name service handling

• What if Linux is present on remote side – No support
• It’s a VirtIO problem too

– No code for data I/O from remote (backend) context

Solution - 1

• Enhance the RPMsg bus driver to provide remote functionality
– Take execution path based on the role (master or remote)

– Use build or runtime option to control the behavior

– Master’s execution path will stay intact

Shared Memory Management

• Remote – no shared memory initialization and filling of virtqueues

• Virtqueue APIs for remote data I/O

– virtqueue_get_available_buffer
• Retrieve buffer from the available ring (both tx & rx vq)

– virtqueue_add_consumed_buffer
• Put buffer into virtqueue used ring

Master Tx Remote Rx

virtqueue_add_buffer()
• Put buffer in available ring

Kick notification

Virtqueue_get_avaialble_buffer()
• Retrieves buffer from available ring – rx vq

Virtqueue_add_consumed_buffer()
• Put buffer back in the used ring –rx_vq

virtqueue_get_buffer()
• Retrieves buffer from the used index

Master Rx

Virtqueue_get_avaialble_buffer()
• Retrieves buffer from available ring – tx vq

Virtqueue_add_consumed_buffer()
• Put buffer back in the used ring – tx vq

Kick notification

Remote Tx

Protocol Handling

• Add code to handle remote side
– Logic to track status reporting and take appropriate action

– Handle startup interrupt – interrupt on TX virtqueue

– Name service announcement
• Code is present

• Need to trigger it at right point
– First Tx callback

– Status is DRIVER_OK

Cont’d

• Pros
– Reference design available in OpenAMP

• Cons
– May not scale well for standalone RPMsg and peer to peer model

Solution - 2

• No strict notion of master and remote
• Let each side manage its Tx buffers

– RPMSG driver
• Both sides will manage shared memory
• Each side manages its Tx virtqueue

– VirtIO
• Same set of APIs for each participating context

– Not available today
– virtqueue_add_buffer

» Increments available index
» Remote is supposed to get buffer from available index

– virtqueue_get_buffer
» Receives buffer from used index
» Remote is supposed to put it there

Protocol Handling

• Status reporting
– Cannot change much here
– VirtIO configuration space requirement
– One side will need to act as sort of Master and Remote

• Client server, initiator

• Name Service announcement
– Can be prevented with static channel creation feature
– Enable NS advertising and handling in RPMsg stack

• Code traces are present

• Trigger Interrupt
– Can be eliminated, use status reporting
– Active communication only after Driver Ok status

Cont’d

• Pros
– Scalable to standalone RPMsg & peer to peer model

• Cons
– Does not conform to VirtIO usage model

– Backwards compatibility can be an issue

Remoteproc

• What are the use cases:
– BM/RTOS on safety critical processor controlling Linux Life Cycle
– Linux booting another Linux?

• inter guest communication, no remoteproc

• Cannot remove the concept of master and remote
• Master has distinct features which cannot be removed or absorbed

in remote
– Parsing the image
– Carving out resources
– Loading image & booting CPU

Remote’s Remoteproc

• Most of the required code is present
– Resource table parsing

– Just use resources – no carve out

– Control execution path using build or runtime option

• Boot strap Linux

• Resource table sharing

Bootstrap Linux Image

Share Resource Table

• Make it part of bootstrap ELF
– Master can access it without any issue
– How to provide access to remote ?

• Fix memory location of resource table at compile time
• Place resource table at that location in bootstrap ELF - using linker script and section

attributes
– Master can still get it from ELF

» Code is reused
– User will provide the address in remote Linux DTS

» Need to provide address at different places
– Platform driver on Linux remote side

– Can boostrap pass address of resource table to Linux remote
• Cannot relocate the resource table
• Suggestions?

Suggestions

• Suggestions from Bjorn and Tomas
– Patch the DTB from bootstrap code to provide the resource table

address. User will not need to provide it in the device node.

– Include libfdt support in the bootstrap to parse DTB and handle
other image types

DECOUPLE RPMSG AND REMOTEPROC

A B C
A

B C

Boot loader will bring up images on all cores

Peer to Peer communication is not
possible

A

B C

Motivation

Cont’d

• Information Sharing

• Protocol

• Buffer Management

Information Sharing

Cont’d

• Same information is required even without remoteproc/resource table
• How to provide?

– Fix memory region at compile time
– Share it with the software contexts involved (using dts, header file)

• Layout of Shared Memory?
– Keep it similar to resource table

• No need to define new layout – specs standpoint
• Some resource are not required - Image carve out resource

– Resource table has dynamic size, determined by the header

• May need new resource – pass on shared memory info

Information Initialization

Approach 1
• Similar to remoteproc

• Master waits for Remote to lay out resource table.

• Remote lays out Resource table, signal master to
update resource table and wait for master's signal.

• Master setups all the resources(SHM, VirtQues)
and updates resource table. Gives remote go
ahead.

• Remote uses resource table and sets up all the
resources on its end.

• Establish channel and start communication

Cont’d

Approach 2

• Resource table will be loaded by
the boat loader

• Will have initial values, previously
provided by the remote

• Access synchronizatiom is not
required at the start

Cont’d

• Master still provides the address of vring!
– Master can carve out shared memory region from its own address

space

– Does not bind the allocation mechanisms in different software
environments

• Participating contexts maintain address of vring
– Vring must start at the same address

Suggestions

• Suggestions from Bjorn and Tomas
• Initially enable information sharing without resource table in shared memory. May

just replicate the information on both sides

• The approach 1 may introduce deadlock during initialization

Implementation Perspective

• Impact on Linux drivers
– virtio_remoteproc.c

• Implements VirtIO device config ops

• Share the code between remoteproc and rpmsg

– Share the resource table parsing code between remoteproc and
rpmsg

– Add new resource in resource table to pass shared memory
information [specially for buffers]

– New platform driver

Peer to Peer Model
• Without remoteproc, Peer to Peer

communication is possible

• RPMsg driver can still have master -
slave architecture

• Consider the example where in
• Three software contexts
• Bootloader boots the images
• Each communication link has its

own resources, shared memory,
IPIs

• Every software environment is
aware of these resources

• A: Master for B and C
• B: Remote for A, master for C
• C : Remote for A, remote for B

Master /
Master

Remote /
Master

Remote /
Remote

A

B C

Buffer Management

• Its an RPMSG issue

• Let the each side control its TX virtqueue completely

• Suppress the master/slave architecture

• More close “Peer to Peer”

Design

• Please see slides 6-11

Thank You

