
EXTERNAL USE

PETR LUKAS, MICHAL PRINC, MAREK NOVAK

MCU SW TEAM

APR 28, 2016

OPEN-AMP 2016.10 FEATURE PROPOSALS



1 EXTERNAL USE

Changes proposed for 2016.10 OpenAMP release

• Zero copy support

−API extension to enable zero copy operation

−Applications can access directly virtio buffers

−Essential for low footprint devices 

− Implementation ready and submitted as a patch

• RPMSG RTOS layer

−Provide API similar to standard RTOS Messaging

−Effective in RTOS, copy operation are not done in the ISR context 

−We would like to be maintainers of this component

− Implementation ready and submitted as a patch

• Standardize RPMSG endpoint operations from Linux user space

−Sysfs driver – experimental implementation done, available for review

−User is able to create/destroy endpoint in runtime

−udev rules to create nodes in /dev are available

• Libmetal

−Concern with code size and complexity for RTOSes and BM (we use only RPMSG i

−We would like to use RPMSG porting layer directly without LIBMETAL on RTOS/BM



2 EXTERNAL USE

Backup slides



3 EXTERNAL USE

Sysfs rpmsg_ept driver



4 EXTERNAL USE

RPMSG RTOS extension - Motivation

• Current RPMsg API relies on ISR

− all the processing of received data must be done in the interrupt context

− message must be copied in a temporary application buffer for later 

processing

• This is not common approach in RTOS environment

• RTOS typically support blocking sequential API

• RTOS-aware extension of RPMsg created



5 EXTERNAL USE

RTOS-aware extension features

• No data processing in the interrupt context

• Blocking receive API

• Zero-copy send and receive API

• Receive with timeout provided by RTOS

• Compatibility with Linux OS upstream kept

• Separation Env and Platform

• FreeRTOS environmental layer

• Baremetal vs. Linux and FreeRTOS vs. Linux communication 

examples

• Own test code



6 EXTERNAL USE

RTOS-aware extension implementation

• Two layers

− RPMsg Extension (ZERO COPY) layer allows users to allocate and 

release virtio tx buffers, as well as it implements the zero-copy send 

functionality, intended for baremetal apps.

− RPMsg RTOS layer addresses RTOS-based application needs 

(handling received data outside the interrupt context, blocking receive 

API implementation, zero-copy mechanisms)



7 EXTERNAL USE

RPMsg ZERO COPY API

• rpmsg_hold_rx_buffer

• rpmsg_release_rx_buffer

• rpmsg_alloc_tx_buffer

• rpmsg_sendto_nocopy

• rpmsg_send_nocopy



8 EXTERNAL USE

RPMsg RTOS API

• rpmsg_rtos_init

• rpmsg_rtos_deinit

• rpmsg_rtos_create_ept -> create msg_queue

• rpmsg_rtos_destroy_ept

• rpmsg_recv()

• rpmsg_rtos_recv_nocopy

• rpmsg_rtos_recv_nocopy_free

• rpmsg_rtos_alloc_tx_buffer

• rpmsg_rtos_send

• rpmsg_rtos_send_nocopy



9 EXTERNAL USE

RPMsg porting sub-layers

The RPMsg porting layers have been also modified and consolidated 

in order to

• Strictly separate platform-related (multicore device) and 

environment-related (Bare Metal, RTOS) layers.

• Update the environment layer API by functions requested by the 

RTOS layer. The following env functions have been introduced:

− int env_create_queue(void queue, int length, int element_size)

− void env_delete_queue(void queue)

− int env_put_queue(void queue, void msg, int timeout_ms)

− int env_get_queue(void queue, void msg, int timeout_ms)




