
EXTERNAL USE

PETR LUKAS, MICHAL PRINC, MAREK NOVAK

MCU SW TEAM, ROZNOV, CZECH REP.

JANUARY 28, 2016

OPEN-AMP MODIFICATIONS 

BY NXP



1 EXTERNAL USE

Motivation

• Current RPMsg API is based on processing the transmitted data in 

the interrupt context

-> all the processing of received data must be done in the interrupt 

context, or

-> message must be copied in a temporary application buffer for 

later processing

• This is not suitable in RTOS environment

• It is more natural and convenient to have a blocking sequential API

• RTOS-aware extension of RPMsg created



2 EXTERNAL USE

RTOS-aware extension features

• No data processing in the interrupt context

• Blocking receive API

• Zero-copy send and receive API

• Receive with timeout provided by RTOS

• Compatibility with Linux OS upstream kept

• Separation Env and Platform

• FreeRTOS environmental layer

• Baremetal vs. Linux and FreeRTOS vs. Linux communication 

examples

• Own test code



3 EXTERNAL USE

RTOS-aware extension implementation

• Two layers

− RPMsg Extension layer allows users to allocate and release virtio tx

buffers, as well as it implements the zero-copy send functionality, 

intended for baremetal apps.

− RPMsg RTOS layer addresses RTOS-based application needs 

(handling received data outside the interrupt context, blocking receive 

API implementation, zero-copy mechanisms)



4 EXTERNAL USE

RPMsg Extension API

• rpmsg_hold_rx_buffer

• rpmsg_release_rx_buffer

• rpmsg_alloc_tx_buffer

• rpmsg_sendto_nocopy

• rpmsg_send_nocopy



5 EXTERNAL USE

RPMsg RTOS API

• rpmsg_rtos_init

• rpmsg_rtos_deinit

• rpmsg_rtos_create_ept

• rpmsg_rtos_destroy_ept

• rpmsg_rtos_recv

• rpmsg_rtos_recv_nocopy

• rpmsg_rtos_recv_nocopy_free

• rpmsg_rtos_alloc_tx_buffer

• rpmsg_rtos_send

• rpmsg_rtos_send_nocopy



6 EXTERNAL USE

RPMsg porting sub-layers

The RPMsg porting layers have been also modified and consolidated 

in order to

• Strictly separate platform-related (multicore device) and 

environment-related (Bare Metal, RTOS) layers.

• Update the environment layer API by functions requested by the 

RTOS layer. The following env functions have been introduced:

− int env_create_queue(void queue, int length, int element_size)

− void env_delete_queue(void queue)

− int env_put_queue(void queue, void msg, int timeout_ms)

− int env_get_queue(void queue, void msg, int timeout_ms)



7 EXTERNAL USE

RPMsg porting sub-layers

Currently, the environment layer 

is implemented for Bare Metal 

and FreeRTOS. To support other 

RTOSes, it is necessary to create 

(clone) the rpmsg_porting.c/.h 

sub-layer using the desired RTOS 

API, put this code into the 

/porting/env/<rtos name> folder, 

and to include this path into the 

list of the project include paths.



8 EXTERNAL USE

Availability

• GitHub open-amp repo fork / FSL_rtos_extension branch

https://github.com/MichalPrincNXP/open-

amp/tree/FSL_rtos_extension

https://github.com/MichalPrincNXP/open-amp/tree/FSL_rtos_extension


9 EXTERNAL USE

Availability

• i.MX 6 Series BSP Release – first NXP release that includes the 

RPMSG port for i.MX6SoloX 

http://www.nxp.com/products/microcontrollers-and-processors/arm-

processors/i.mx-applications-processors-based-on-arm-cores/i.mx-

6-processors/i.mx6qp/i.mx-6-series-software-and-development-

tool-resources:IMX6_SW#bsp

http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/i.mx-applications-processors-based-on-arm-cores/i.mx-6-processors/i.mx6qp/i.mx-6-series-software-and-development-tool-resources:IMX6_SW#bsp


10 EXTERNAL USE



11 EXTERNAL USE

What is still missing, plans

• Versioning

• Compiler support (packed structure macros, etc.)

• Test suite available for customers (reusing Unity test project, 

https://github.com/ThrowTheSwitch/Unity )

• Primary IPC for new NXP multicore SoCs (porting effort)

• Support RPMsg “standardization” within the MCA

• Security aspects of the RPMsg communication (handling virtio

buffers in SHMEM)

https://github.com/ThrowTheSwitch/Unity



